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The nonlinear Schrödinger equation

We are interested in nonzero solutions of the PDE{
−∆u + λu = |u|p−2u in Ω,

u = 0 in ∂Ω,
(NLS)

where p > 2 and λ are real parameters and u : Ω → R and Ω ⊆ RN is an open domain.

For a given λ, solutions of (NLS) correspond to critical points of the action functional
Jλ : H

1
0(Ω) → R, defined by

Jλ(u) :=
1

2

∫
Ω

∥∇u∥2 dx +
λ

2

∫
Ω

|u|2 dx− 1

p

∫
Ω

|u|p dx.

Action ground states

The functional Jλ is not bounded from below on H1
0(Ω). Indeed, if u ̸= 0, then

Jλ(tu) =
t2

2
∥u′∥2L2(Ω) +

λt2

2
∥u∥2L2(Ω) −

tp

p
∥u∥pLp(Ω) −−−→t→∞

−∞.

A typical way to recover boundedness consists in introducing the Nehari manifold Nλ:

Nλ :=
{
u ∈ H1(Ω) \ {0}

∣∣ J ′
λ(u)u = 0

}
=
{
u ∈ H1(Ω) \ {0}

∣∣ ∥∇u∥2L2(Ω) + λ∥u∥2L2(Ω) = ∥u∥pLp(Ω)

}
.

One then defines the action ground state level

J (λ) := inf
u∈Nλ

Jλ(u).

It is standard to show (see e.g. [8]) that, when Ω is bounded, p < 2∗ and λ > −λ1(Ω),
minimizers of the above problem exist and are least action solutions of the problem. They
have a constant sign since one may replace u by |u| in the minimization problem.

Nodal action ground states

All sign-changing solutions of the problem belong to the nodal Nehari set

N nod
λ :=

{
u ∈ H1

0(Ω)
∣∣ u± ∈ Nλ

}
where u+ = max(u, 0) and u− = min(u, 0) are the positive and negative parts of u.

Then, one considers the level

J nod(λ) := inf
u∈N nod

λ

Jλ(u).

When Ω is bounded, p < 2∗ and λ > −λ2(Ω), minimizers of the above problem exist (see [1])
and are least action nodal solutions of the problem.

Normalized solutions

A normalized solution to (NLS) is a solution whose L2-norm (usually called the mass) is
prescribed a priori, whereas λ is an unknown of the problem.
They correspond to constrained critical points of the energy functional E : H1

0(Ω) → R

E(u) :=
1

2
∥∇u∥2L2(Ω) −

1

p
∥u∥pLp(Ω)

on the L2-sphere

Mµ :=
{
u ∈ H1

0(Ω)
∣∣ ∥u∥2L2(Ω) = µ

}
,

λ arising then as a Lagrange multiplier.

Least energy normalized solutions, i.e. functions u ∈ Mµ solving (NLS) and satisfying

E(u) = inf
{
E(v)

∣∣ v ∈ Mµ solves (NLS) for some λ ∈ R
}

are particularly interesting. When p < 2 + 4
N , least energy solutions can be found (see

e.g. [2]) by solving the minimization problem infu∈Mµ
E(u).

When p > 2 + 4
N , the energy E is unbounded from below on Mµ for every µ, and different

approaches are needed (e.g. of mountain-pass type, see [5]). This problem received a lot of
interest on RN but, so far, much less on bounded domains (see e.g. [6] and [7] however).

Two questions

How to find least energy normalized solutions in the L2-supercritical regime?

How to find normalized nodal solutions?

Main results

Theorem. Let Ω ⊂ RN be open and bounded and, for every p ∈ (2, 2∗), let

Mp(Ω) :=
{
∥u∥2L2(Ω)

∣∣ u ∈ Nλ and Jλ(u) = J (λ) for some λ ∈ R
}
,

Mnod
p (Ω) :=

{
∥u∥2L2(Ω)

∣∣ u ∈ N nod
λ and Jλ(u) = J nod(λ) for some λ ∈ R

}
be the set of masses of all action ground states and nodal action ground states. Then

(i) if p < 2 + 4
N , then

Mp(Ω) = Mnod
p (Ω) = (0,∞);

(ii) if p = 2 + 4
N , then there exist 0 < µp, µ

nod
p < ∞ such that

(0, µp) ⊆ Mp(Ω) ⊆ (0, µp] and (0, µnod
p ) ⊆ Mnod

p (Ω) ⊆ (0, µnod
p ];

(iii) if p > 2 + 4
N , then there exist 0 < µp, µ

nod
p < ∞ such that

Mp(Ω) = (0, µp] and Mnod
p (Ω) = (0, µnod

p ].

Theorem. Let Ω ⊂ RN be open and bounded, and either

(i) p < 2 + 4
N and µ > 0; or

(ii) p = 2 + 4
N and µ < 2µN , where µN := 2 infu∈N1(RN) J1(u); or

(iii) p > 2 + 4
N , Ω is star-shaped, and µ is small enough.

Then there exists a least energy normalized nodal solution with mass µ.

An idea of the techniques

We make a strong use of the convex duality between the action and the energy levels
discovered in [4].

In particular, we show that if λ∗, λ
nod
∗ ∈ R are local minimizers of the maps

λ 7→ J (λ)− µ

2
λ or λ 7→ J nod(λ)− µ

2
λ,

then action ground states in Nλ∗ and nodal action ground states in N nod
λnod
∗

have mass µ.

We then show that such minimizers exist under suitable assumptions on the masses.

A counterintuitive result

We take p = 2 + 4
N and we consider the ball. Noris, Tavares and Verzini have shown in [6]

that the set {
∥u∥2L2(Ω)

∣∣ u positive solution of (NLS) for some λ ∈ R
}

is equal to (0, µN). Our results imply that, for µ ∈ [µN , 2µN), there exist least energy
normalized nodal solutions with mass µ. Thus...

Least energy solutions may be nodal!
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